
MONTH OF PHP SECURITY 2010 – A NEW OPEN SOURCE PHP SECURITY TOOL – OWASP ESAPI FOR PHP

1

Abstract—Don’t write your own security controls! Reinventing

the wheel when it comes to developing security controls for every
PHP web application leads to wasted time and massive security
holes. OWASP Enterprise Security API (ESAPI) for PHP helps
software developers guard against security‐related design and
implementation flaws. ESAPI for PHP is designed to make it easy
to retrofit security into existing applications, as well as providing
a solid foundation for new development.

Index Terms—OWASP, ESAPI, PHP, XSS, SQLi

I. INTRODUCTION
WASP ESAPI for PHP is designed to ensure that strong
simple security controls are available to PHP developers.

All OWASP ESAPI for PHP security controls are called in the
same basic way, as depicted in the figure below.

Fig. 1. How ESAPI for PHP works out of the box.

The basic OWASP ESAPI for PHP design:

• There is a set of security control interfaces. There is
no application logic contained in these interfaces.
They define for example types of parameters that
are passed to types of security controls. There is no
proprietary information or logic contained in these
interfaces.

• There is a reference implementation for each
security control. There is application logic
contained in these classes, i.e. contained in these
interface implementations. However, the logic is
not organization-specific and the logic is not
application-specific. There is no proprietary
information or logic contained in these reference

Paper submitted March 24, 2010. Mike Boberski is the OWASP ESAPI

for PHP project manager, McLean, VA 22101 USA (e-mail:
mike.boberski@owasp.org).

implementation classes. An example: string-based
input validation.

• There are optionally your own implementations for
each security control. There may be application
logic contained in these classes which may be
developed by or for your organization. The logic
may be organization-specific and/or application-
specific. There may be proprietary information or
logic contained in these classes which may be
developed by or for your organization. An
example: enterprise authentication.

There are three common ways to write your own

implementations for each security control: using a “built-in”
singleton pattern, using an “extended” singleton pattern, or
using an “extended” factory pattern. The remainder of this
paper explores these three design patterns, including situations
where taking more than one approach may be appropriate.

II. THE BUILT-IN SINGLETON PATTERN

The ESAPI security control interfaces include an “ESAPI”
class that is commonly referred to as a “locator” class. The
ESAPI locator class is called in order to retrieve singleton
instances of individual security controls, which are then called
in order to perform security checks (such as performing an
access control check) or that result in security effects (such as
generating an audit record).

The “built-in” singleton pattern refers to the replacement of
security control reference implementations with your own
implementations. ESAPI interfaces are otherwise left intact.

A. For example:
...
require_once dirname(__FILE__) . '/../Authenticator.php';
...
//your implementation
class MyAuthenticator implements Authenticator {
...

B. Developers would call ESAPI in this example as follows:
...
$ESAPI = new ESAPI();
$myauthenticator = new MyAuthenticator();

//register with locator class
ESAPI::setAuthenticator($myauthenticator);
$authenticator = ESAPI::getAuthenticator();
$authenticator->login(...); //use your implementation
...

A New Open Source Tool:
OWASP ESAPI for PHP

Mike Boberski, OWASP ESAPI for PHP Project Manager

O

mailto:mike.boberski@owasp.org�

MONTH OF PHP SECURITY 2010 – A NEW OPEN SOURCE PHP SECURITY TOOL – OWASP ESAPI FOR PHP

2

The UML for the above example is in the figure below.

+login()
+...()

«interface»
Authenticator

+login()
+...()

MyAuthenticator

+login()
+...()

DefaultAuthenticator
ESAPI reference
implementation

ESAPI interface

Your implementation
(has the same functions as
reference implementation)

Fig. 2. Built-In Singleton Pattern Example.

Pros of taking this approach include loose coupling between
ESAPI and your own implementations.

Cons include the need for developers to understand how to
call ESAPI functions with the parameters required by your
organization and/or application.

III. THE EXTENDED SINGLETON PATTERN

While ESAPI security control reference implementations
may perform the security checks and result in the security
effects required by your organization and/or application, there
may be a need to minimize the need for developers to
understand how to call ESAPI functions with the parameters
required by your organization and/or application. Availability
of training may be an issue, for example. Another example
would be to facilitate enforcing a coding standard.

The “extended” singleton pattern refers to the replacement
of security control reference implementations with your own
implementations and the addition/modification/subtraction of
corresponding security control interfaces.

A. For example:
...
require_once dirname(__FILE__) . '/../Validator.php';
...
//reference implementation
class DefaultValidator implements Validator {
...
//not defined in Validator interface
function isValidEmployeeID($eid) {
...

B. Developers would call ESAPI in this example as follows:
...
$ESAPI = new ESAPI();
$validator = ESAPI::getValidator();
$validator->isValidEmployeeID(1234);
...

The UML for the above example is in the figure below.

+isValidInput()
+...()

«interface»
Validator

+isValidInput()
+...()
+isValidEmployeeID()

MyValidator

+isValidInput()
+...()

DefaultValidator ESAPI reference
implementation
(does not include a
“isValidEmployeeID” function)

ESAPI interface

Your implementation
(has additional and/or
perhaps changed functions
compared to reference
implementation)

May also be modified

Fig. 3. Extended Singleton Pattern Example.

Pros of taking this approach are the lessening of the need for
developers to understand how to call ESAPI functions with the
specific parameters required by your organization and/or
application. Pros also include minimizing or eliminating the
ability for developers to call ESAPI functions that deviate
from your organization’s and/or application’s policies.

Cons result from the tight coupling between ESAPI and
your own implementations: you will need to maintain both the
modified security control reference implementations and the
modified security control interfaces (as new versions of ESAPI
are released over time).

IV. THE EXTENDED FACTORY PATTERN

While ESAPI security control reference implementations
may perform the security checks and result in the security
effects required by your organization and/or application, there
may be a need to eliminate the ability of developers to deviate
from your organization’s and/or application’s policies. High
developer turnover may be an issue, for example. Another
example would be to strongly enforce a coding standard.

The “extended” factory patterns refers to the addition of a
new security control interface and corresponding
implementation, which in turn calls ESAPI security control
reference implementations and/or security control reference
implementations that were replaced with your own
implementations. The ESAPI locator class would be called in
order to retrieve a singleton instance of your new security
control, which in turn would call ESAPI security control
reference implementations and/or security control reference
implementations that were replaced with your own
implementations.

A. For example:
In the ESAPI locator class:

...
class ESAPI {
...
//not defined in ESAPI locator class
private static $adapter = null;
...
//new function
public static function getAdapter() {

MONTH OF PHP SECURITY 2010 – A NEW OPEN SOURCE PHP SECURITY TOOL – OWASP ESAPI FOR PHP

3

 if (is_null(self::$adapter)) {
 require_once

dirname(__FILE__).'/adapters/MyAdapter.php';
 self::$adapter = new MyAdapter();
 }

 return self::$adapter;
}

//new function
public static function setAdapter($adapter) {
 self::$adapter = $adapter;
}

In the new security control class’ interface:

...
//new interface
interface Adapter {

 function getValidEmployeeID($eid);
 function isValidEmployeeID($eid);

}

In the new security control class:

...
require_once dirname (__FILE__) . '/../Adapter.php';

//new class with your implementation
class MyAdapter implements Adapter {

//for your new interface
function getValidEmployeeID($eid) {
 //calls reference implementation
 $val = ESAPI::getValidator();
 //calls using hardcoded parameters
 $val->getValidInput(
 "My Organization's Employee ID",
 $eid,
 "EmployeeID", //regex defined in ESAPI config
 4,
 false
);
}

//for your new interface
function isValidEmployeeID($eid) {
 try {
 $this->getValidEmployeeID($eid);
 return true;
 } catch (Exception $e) {
 return false;
 }

}

B. Developers would call ESAPI in this example as follows:
...
$ESAPI = new ESAPI();
$adapter = ESAPI::getAdapter();
$adapter->isValidEmployeeID(1234);
... //no other ESAPI controls called directly

The UML for the above example is in the figure below.

+...()
+getAdapter()

-adapter
ESAPI

+isValidEmployeeID()
+...()

«interface»
Adapter

+isValidEmployeeID()
+...()

MyAdapter

ESAPI
locator
class

Your
implementation
(calls ESAPI
interfaces)

Fig. 4. Extended Factory Pattern Example.

Pros of taking this approach are the same as for the

extended singleton pattern, and additionally include loose
coupling between ESAPI and your own implementations,
compared to the extended singleton pattern.

Cons include the need to maintain the modified ESAPI
locator class (as new versions of ESAPI are released over
time).

V. CONCLUSION
OWASP is the premier site for Web application security.

The OWASP site hosts many projects, forums, blogs,
presentations, tools, and papers. Additionally, OWASP hosts
two major Web application security conferences per year, and
has over 80 local chapters. The OWASP ESAPI project page
can be found here http://www.owasp.org/index.php/ESAPI

The following OWASP projects are most likely to be useful
to users/adopters of ESAPI:

• OWASP Application Security Verification Standard

(ASVS) Project -
http://www.owasp.org/index.php/ASVS

• OWASP Top Ten Project -
http://www.owasp.org/index.php/Top_10

• OWASP Code Review Guide -
http://www.owasp.org/index.php/Category:OWAS
P_Code_Review_Project

• OWASP Testing Guide -
http://www.owasp.org/index.php/Testing_Guide

• OWASP Legal Project -
http://www.owasp.org/index.php/Category:OWAS
P_Legal_Project

Similarly, the following Web sites are most likely to be

useful to users/adopters of ESAPI:

• OWASP - http://www.owasp.org
• MITRE - Common Weakness Enumeration –

Vulnerability Trends,
http://cwe.mitre.org/documents/vuln-trends.html

• PCI Security Standards Council - publishers of the
PCI standards, relevant to all organizations
processing or holding credit card data,
https://www.pcisecuritystandards.org

• PCI Data Security Standard (DSS) v1.1 -
https://www.pcisecuritystandards.org/pdfs/pci_dss_
v1-1.pdf

http://www.owasp.org/index.php/ESAPI�
http://www.owasp.org/index.php/ASVS�
http://www.owasp.org/index.php/Top_10�
http://www.owasp.org/index.php/Category:OWASP_Code_Review_Project�
http://www.owasp.org/index.php/Category:OWASP_Code_Review_Project�
http://www.owasp.org/index.php/Testing_Guide�
http://www.owasp.org/index.php/Category:OWASP_Legal_Project�
http://www.owasp.org/index.php/Category:OWASP_Legal_Project�
http://www.owasp.org/�
http://cwe.mitre.org/documents/vuln-trends.html�
https://www.pcisecuritystandards.org/�
https://www.pcisecuritystandards.org/pdfs/pci_dss_v1-1.pdf�
https://www.pcisecuritystandards.org/pdfs/pci_dss_v1-1.pdf�

	I. INTRODUCTION
	II. The Built-In Singleton Pattern
	A. For example:
	B. Developers would call ESAPI in this example as follows:

	III. The Extended Singleton Pattern
	A. For example:
	B. Developers would call ESAPI in this example as follows:

	IV. The Extended Factory Pattern
	A. For example:
	B. Developers would call ESAPI in this example as follows:

	V. Conclusion

